17,002 research outputs found

    Mind-reading versus neuromarketing: how does a product make an impact on the consumer?

    Get PDF
    Purpose – This research study aims to illustrate the mapping of each consumer’s mental processes in a market-relevant context. This paper shows how such maps deliver operational insights that cannot be gained by physical methods such as brain imaging. Design/methodology/approach – A marketed conceptual attribute and a sensed material characteristic of a popular product were varied across presentations in a common use. The relative acceptability of each proposition was rated together with analytical descriptors. The mental interaction that determined each consumer’s preferences was calculated from the individual’s performance at discriminating each viewed sample from a personal norm. These personal cognitive characteristics were aggregated into maps of demand in the market for subpanels who bought these for the senses or for the attribute. Findings – Each of 18 hypothesized mental processes dominated acceptance in at least a few individuals among both sensory and conceptual purchasers. Consumers using their own descriptive vocabulary processed the factors in appeal of the product more centrally. The sensory and conceptual factors tested were most often processed separately, but a minority of consumers treated them as identical. The personal ideal points used in the integration of information showed that consumers wished for extremes of the marketed concept that are technologically challenging or even impossible. None of this evidence could be obtained from brain imaging, casting in question its usefulness in marketing. Research limitations/implications – Panel mapping of multiple discriminations from a personal norm fills three major gaps in consumer marketing research. First, preference scores are related to major influences on choices and their cognitive interactions in the mind. Second, the calculations are completed on the individual’s data and the cognitive parameters of each consumer’s behavior are aggregated – never the raw scores. Third, discrimination scaling puts marketed symbolic attributes and sensed material characteristics on the same footing, hence measuring their causal interactions for the first time. Practical implications – Neuromarketing is an unworkable proposition because brain imaging does not distinguish qualitative differences in behavior. Preference tests are operationally effective when designed and analyzed to relate behavioral scores to major influences from market concepts and sensory qualities in interaction. The particular interactions measured in the reported study relate to the major market for healthy eating. Originality/value – This is the first study to measure mental interactions among determinants of preference, as well as including both a marketed concept and a sensed characteristic. Such an approach could be of great value to consumer marketing, both defensively and creatively

    Comparative Monte Carlo Efficiency by Monte Carlo Analysis

    Full text link
    We propose a modified power method for computing the subdominant eigenvalue λ2\lambda_2 of a matrix or continuous operator. Here we focus on defining simple Monte Carlo methods for its application. The methods presented use random walkers of mixed signs to represent the subdominant eigenfuction. Accordingly, the methods must cancel these signs properly in order to sample this eigenfunction faithfully. We present a simple procedure to solve this sign problem and then test our Monte Carlo methods by computing the λ2\lambda_2 of various Markov chain transition matrices. We first computed λ2{\lambda_2} for several one and two dimensional Ising models, which have a discrete phase space, and compared the relative efficiencies of the Metropolis and heat-bath algorithms as a function of temperature and applied magnetic field. Next, we computed λ2\lambda_2 for a model of an interacting gas trapped by a harmonic potential, which has a mutidimensional continuous phase space, and studied the efficiency of the Metropolis algorithm as a function of temperature and the maximum allowable step size Δ\Delta. Based on the λ2\lambda_2 criterion, we found for the Ising models that small lattices appear to give an adequate picture of comparative efficiency and that the heat-bath algorithm is more efficient than the Metropolis algorithm only at low temperatures where both algorithms are inefficient. For the harmonic trap problem, we found that the traditional rule-of-thumb of adjusting Δ\Delta so the Metropolis acceptance rate is around 50% range is often sub-optimal. In general, as a function of temperature or Δ\Delta, λ2\lambda_2 for this model displayed trends defining optimal efficiency that the acceptance ratio does not. The cases studied also suggested that Monte Carlo simulations for a continuum model are likely more efficient than those for a discretized version of the model.Comment: 23 pages, 8 figure

    Photoionization Rates of Cs Rydberg Atoms in a 1064 nm Far Off-Resonance Trap

    Full text link
    Experimental measurements of photoionization rates of nD5/2nD_{5/2} Rydberg states of Cs (50≀n≀7550 \leq n \leq 75) in a 1064 nm far off-resonance dipole trap are presented. The photoionization rates are obtained by measuring the lifetimes of Rydberg atoms produced inside of a 1064 nm far off-resonance trap and comparing the lifetimes to corresponding control experiments in a magneto-optical trap. Experimental results for the control experiments agree with recent theoretical predictions for Rydberg state lifetimes and measured photoionization rates are in agreement with transition rates calculated from a model potential.Comment: 12 pages, 4 figure

    Explicitly correlated plane waves: Accelerating convergence in periodic wavefunction expansions

    Full text link
    We present an investigation into the use of an explicitly correlated plane wave basis for periodic wavefunction expansions at the level of second-order M{\o}ller-Plesset perturbation theory (MP2). The convergence of the electronic correlation energy with respect to the one-electron basis set is investigated and compared to conventional MP2 theory in a finite homogeneous electron gas model. In addition to the widely used Slater-type geminal correlation factor, we also derive and investigate a novel correlation factor that we term Yukawa-Coulomb. The Yukawa-Coulomb correlation factor is motivated by analytic results for two electrons in a box and allows for a further improved convergence of the correlation energies with respect to the employed basis set. We find the combination of the infinitely delocalized plane waves and local short-ranged geminals provides a complementary, and rapidly convergent basis for the description of periodic wavefunctions. We hope that this approach will expand the scope of discrete wavefunction expansions in periodic systems.Comment: 15 pages, 13 figure

    Observation of blue-shifted ultralong-range Cs2_{2} Rydberg molecules

    Full text link
    We observe ultralong-range blue-shifted Cs2_{2} molecular states near ns1/2ns_{1/2} Rydberg states in an optical dipole trap, where 31≀n≀3431\leq n\leq34. The accidental near degeneracy of (n−4)l(n-4)l and nsns Rydberg states for l>2l>2 in Cs, due to the small fractional nsns quantum defect, leads to non-adiabatic coupling among these states, producing potential wells above the nsns thresholds. Two important consequences of admixing high angular momentum states with nsns states are the formation of large permanent dipole moments, ∌15−100 \sim 15-100\,Debye, and accessibility of these states via two-photon association. The observed states are in excellent agreement with theory. Both projections of the total angular momentum on the internuclear axis are visible in the experiment

    Horizon energy and angular momentum from a Hamiltonian perspective

    Full text link
    Classical black holes and event horizons are highly non-local objects, defined in terms of the causal past of future null infinity. Alternative, (quasi)local definitions are often used in mathematical, quantum, and numerical relativity. These include apparent, trapping, isolated, and dynamical horizons, all of which are closely associated to two-surfaces of zero outward null expansion. In this paper we show that three-surfaces which can be foliated with such two-surfaces are suitable boundaries in both a quasilocal action and a phase space formulation of general relativity. The resulting formalism provides expressions for the quasilocal energy and angular momentum associated with the horizon. The values of the energy and angular momentum are in agreement with those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged but many small improvements made in response to referees, a few references adde

    X-ray Absorption Fine Structure in Embedded Atoms

    Full text link
    Oscillatory structure is found in the atomic background absorption in x-ray-absorption fine structure (XAFS). This atomic-XAFS or AXAFS arises from scattering within an embedded atom, and is analogous to the Ramsauer-Townsend effect. Calculations and measurements confirm the existence of AXAFS and show that it can dominate contributions such as multi-electron excitations. The structure is sensitive to chemical effects and thus provides a new probe of bonding and exchange effects on the scattering potential.Comment: 4 pages plus 2 postscript figures, REVTEX 3.
    • 

    corecore